Antigenic Shift

Antigenic shift is the process by which two or more different strains of a virus, or strains of two or more different viruses, combine to form a new subtype having a mixture of the surface antigens of the two or more original strains. The term is often applied specifically to influenza, as that is the best-known example, but the process is also known to occur with other viruses, such as visna virus in sheep. Antigenic shift is a specific case of reassortment or viral shift that confers a phenotypic change.

In terms of virology, the marine ecosystem has been largely unstudied, but due to its extraordinary volume, high viral density (100 million viruses per mL in coastal waters, 3 million per mL in the deep sea) and high cell lysing rate (as high as 20% on average), marine viruses' antigenic shift and genetic recombination rates must be quite high. This is most striking when one considers that the coevolution of prokaryotes and viruses in the aquatic environment has been going on since before eukaryotes appeared on earth.

Antigenic shift is contrasted with antigenic drift, which is the natural mutation over time of known strains of influenza (or other things, in a more general sense) which may lead to a loss of immunity, or in vaccine mismatch. Antigenic drift occurs in all types of influenza including influenzavirus A, influenza B and influenza C. Antigenic shift, however, occurs only in influenzavirus A because it infects more than just humans. Affected species include other mammals and birds, giving influenza A the opportunity for a major reorganization of surface antigens. Influenza B and C principally infect humans, minimizing the chance that a reassortment will change its phenotype drastically.

Antigenic shift is important for the emergence of new viral pathogens as it is a pathway that viruses may follow to enter a new niche. It could occur with primate viruses and may be a factor for the appearance of new viruses in the human species such as HIV. Due to the structure of its genome, HIV does not undergo reassortment, but it does recombine freely and via superinfection HIV can produce recombinant HIV strains that differ significantly from their ancestors.

Flu strains are named after their types of hemagglutinin and neuraminidase surface proteins, so they will be called, for example, H3N2 for type-3 hemagglutinin and type-2 neuraminidase. When two different strains of influenza infect the same cell simultaneously, their protein capsids and lipid envelopes are removed, exposing their RNA, which is then transcribed to mRNA. The host cell then forms new viruses that combine their antigens; for example, H3N2 and H5N1 can form H5N2 this way. Because the human immune system has difficulty recognizing the new influenza strain, it may be highly dangerous. Influenza viruses which have undergone antigenic shift have caused the Asian Flu pandemic of 1957, the Hong Kong Flu pandemic of 1968, and the Swine Flu scare of 1976. Until recently, such combinations were believed to have caused the infamous Spanish Flu outbreak of 1918 which killed 40~100 million people worldwide; however more recent research suggests the 1918 pandemic was caused by the antigenic drift of a fully avian virus to a form that could infect humans efficiently. One increasingly worrying situation is the possible antigenic shift between avian influenza and human influenza. This antigenic shift could cause the formation of a highly virulent virus.

Read more about Antigenic ShiftRole in Transmission of Influenza Viruses From Animals To People

Other articles related to "antigenic shift, shift":

Antigenic Shift - Role in Transmission of Influenza Viruses From Animals To People
... influenza virus and an avian influenza virus at the same time, an antigenic shift could occur, producing a new virus that had most of the genes from the human virus, but a hemagglutinin or ... The most recent 2009 H1N1 outbreak was a result of antigenic shift and reassortment between human, avian, and swine viruses ... The reason why influenza virus can undergo genetic shift is because it contains a segmented genome composed of 8 pieces ...

Famous quotes containing the word shift:

    Ghosts, we hope, may be always with us—that is, never too far out of the reach of fancy. On the whole, it would seem they adapt themselves well, perhaps better than we do, to changing world conditions—they enlarge their domain, shift their hold on our nerves, and, dispossessed of one habitat, set up house in another. The universal battiness of our century looks like providing them with a propitious climate ...
    Elizabeth Bowen (1899–1973)