Aerogen - History

History

Noble gas is translated from the German noun Edelgas, first used in 1898 by Hugo Erdmann to indicate their extremely low level of reactivity. The name makes an analogy to the term "noble metals", which also have low reactivity. The noble gases have also been referred to as inert gases, but this label is deprecated as many noble gas compounds are now known. Rare gases is another term that was used, but this is also inaccurate because argon forms a fairly considerable part (0.94% by volume, 1.3% by mass) of the Earth's atmosphere.

Pierre Janssen and Joseph Norman Lockyer discovered a new element on August 18, 1868 while looking at the chromosphere of the Sun, and named it helium after the Greek word for the Sun, ήλιος (ílios or helios). No chemical analysis was possible at the time, but helium was later found to be a noble gas. Before them, in 1784, the English chemist and physicist Henry Cavendish had discovered that air contains a small proportion of a substance less reactive than nitrogen. A century later, in 1895, Lord Rayleigh discovered that samples of nitrogen from the air were of a different density than nitrogen resulting from chemical reactions. Along with Scottish scientist William Ramsay at University College, London, Lord Rayleigh theorized that the nitrogen extracted from air was mixed with another gas, leading to an experiment that successfully isolated a new element, argon, from the Greek word αργός (argós, "inactive"). With this discovery, they realized an entire class of gases was missing from the periodic table. During his search for argon, Ramsay also managed to isolate helium for the first time while heating cleveite, a mineral. In 1902, having accepted the evidence for the elements helium and argon, Dmitri Mendeleev included these noble gases as group 0 in his arrangement of the elements, which would later become the periodic table.

Ramsay continued to search for these gases using the method of fractional distillation to separate liquid air into several components. In 1898, he discovered the elements krypton, neon, and xenon, and named them after the Greek words κρυπτός (kryptós, "hidden"), νέος (néos, "new"), and ξένος (xénos, "stranger"), respectively. Radon was first identified in 1898 by Friedrich Ernst Dorn, and was named radium emanation, but was not considered a noble gas until 1904 when its characteristics were found to be similar to those of other noble gases. Rayleigh and Ramsay received the 1904 Nobel Prizes in Physics and in Chemistry, respectively, for their discovery of the noble gases; in the words of J. E. Cederblom, then president of the Royal Swedish Academy of Sciences, "the discovery of an entirely new group of elements, of which no single representative had been known with any certainty, is something utterly unique in the history of chemistry, being intrinsically an advance in science of peculiar significance".

The discovery of the noble gases aided in the development of a general understanding of atomic structure. In 1895, French chemist Henri Moissan attempted to form a reaction between fluorine, the most electronegative element, and argon, one of the noble gases, but failed. Scientists were unable to prepare compounds of argon until the end of the 20th century, but these attempts helped to develop new theories of atomic structure. Learning from these experiments, Danish physicist Niels Bohr proposed in 1913 that the electrons in atoms are arranged in shells surrounding the nucleus, and that for all noble gases except helium the outermost shell always contains eight electrons. In 1916, Gilbert N. Lewis formulated the octet rule, which concluded an octet of electrons in the outer shell was the most stable arrangement for any atom; this arrangement caused them to be unreactive with other elements since they did not require any more electrons to complete their outer shell.

In 1962 Neil Bartlett discovered the first chemical compound of a noble gas, xenon hexafluoroplatinate. Compounds of other noble gases were discovered soon after: in 1962 for radon, radon difluoride, and in 1963 for krypton, krypton difluoride (KrF
2). The first stable compound of argon was reported in 2000 when argon fluorohydride (HArF) was formed at a temperature of 40 K (−233.2 °C; −387.7 °F).

In December 1998, scientists at the Joint Institute for Nuclear Research working in Dubna, Russia bombarded plutonium (Pu) with calcium (Ca) to produce a single atom of element 114, flerovium (Fl). Preliminary chemistry experiments have indicated this element may be the first superheavy element to show abnormal noble-gas-like properties, even though it is a member of group 14 on the periodic table. In October 2006, scientists from the Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory successfully created synthetically ununoctium (Uuo), the seventh element in group 18, by bombarding californium (Cf) with calcium (Ca).

Read more about this topic:  Aerogen

Other articles related to "history":

Spain - History - Fall of Muslim Rule and Unification
... The breakup of Al-Andalus into the competing taifa kingdoms helped the long embattled Iberian Christian kingdoms gain the initiative ... The capture of the strategically central city of Toledo in 1085 marked a significant shift in the balance of power in favour of the Christian kingdoms ...
Casino - History of Gambling Houses
... believed that gambling in some form or another has been seen in almost every society in history ... Romans to Napoleon's France and Elizabethan England, much of history is filled with stories of entertainment based on games of chance ... In American history, early gambling establishments were known as saloons ...
Voltaire - Works - Historical
... History of Charles XII, King of Sweden (1731) The Age of Louis XIV (1751) The Age of Louis XV (1746–1752) Annals of the Empire – Charlemagne, A.D ... II (1754) Essay on the Manners of Nations (or 'Universal History') (1756) History of the Russian Empire Under Peter the Great (Vol ... II 1763) History of the Parliament of Paris (1769) ...
History of Computing
... The history of computing is longer than the history of computing hardware and modern computing technology and includes the history of methods intended for pen and paper or for chalk and slate, with or ...
Xia Dynasty - Modern Skepticism
... The Skeptical School of early Chinese history, started by Gu Jiegang in the 1920s, was the first group of scholars within China to seriously question the traditional story of its early history "the later the time ... early Chinese history is a tale told and retold for generations, during which new elements were added to the front end" ...

Famous quotes containing the word history:

    To care for the quarrels of the past, to identify oneself passionately with a cause that became, politically speaking, a losing cause with the birth of the modern world, is to experience a kind of straining against reality, a rebellious nonconformity that, again, is rare in America, where children are instructed in the virtues of the system they live under, as though history had achieved a happy ending in American civics.
    Mary McCarthy (1912–1989)

    Modern Western thought will pass into history and be incorporated in it, will have its influence and its place, just as our body will pass into the composition of grass, of sheep, of cutlets, and of men. We do not like that kind of immortality, but what is to be done about it?
    Alexander Herzen (1812–1870)

    There is no history of how bad became better.
    Henry David Thoreau (1817–1862)