2004 Indian Ocean Earthquake and Tsunami - Earthquake Characteristics - Energy Released

Energy Released

The energy released on the Earth's surface only (ME, which is the seismic potential for damage) by the 2004 Indian Ocean earthquake and tsunami was estimated at 1.1×1017 joules, or 26 megatons of TNT. This energy is equivalent to over 1500 times that of the Hiroshima atomic bomb, but less than that of Tsar Bomba, the largest nuclear weapon ever detonated. However, the total work done MW (and thus energy) by this quake was 4.0×1022 joules (4.0×1029 ergs), the vast majority underground. This is over 360,000 times more than its ME, equivalent to 9,600 gigatons of TNT equivalent (550 million times that of Hiroshima) or about 370 years of energy use in the United States at 2005 levels of 1.08×1020 J.

The only recorded earthquakes with a larger MW were the 1960 Chilean and 1964 Alaskan quakes, with 2.5×1023 joules (250 ZJ) and 7.5×1022 joules (75 ZJ) respectively.

The earthquake generated a seismic oscillation of the Earth's surface of up to 20–30 cm (8–12 in), equivalent to the effect of the tidal forces caused by the Sun and Moon. The shock waves of the earthquake were felt across the planet; as far away as the U.S. state of Oklahoma, where vertical movements of 3 mm (0.12 in) were recorded. By February 2005, the earthquake's effects were still detectable as a 20 µm (0.02 mm; 0.0008 in) complex harmonic oscillation of the Earth's surface, which gradually diminished and merged with the incessant free oscillation of the Earth more than 4 months after the earthquake.

Because of its enormous energy release and shallow rupture depth, the earthquake generated remarkable seismic ground motions around the globe, particularly due to huge Rayleigh (surface) elastic waves that exceeded 1 cm (0.4 in) in vertical amplitude everywhere on Earth. The record section plot below displays vertical displacements of the Earth's surface recorded by seismometers from the IRIS/USGS Global Seismographic Network plotted with respect to time (since the earthquake initiation) on the horizontal axis, and vertical displacements of the Earth on the vertical axis (note the 1 cm scale bar at the bottom for scale). The seismograms are arranged vertically by distance from the epicenter in degrees. The earliest, lower amplitude, signal is that of the compressional (P) wave, which takes about 22 minutes to reach the other side of the planet (the antipode; in this case near Ecuador). The largest amplitude signals are seismic surface waves that reach the antipode after about 100 minutes. The surface waves can be clearly seen to reinforce near the antipode (with the closest seismic stations in Ecuador), and to subsequently encircle the planet to return to the epicentral region after about 200 minutes. A major aftershock (magnitude 7.1) can be seen at the closest stations starting just after the 200 minute mark. This aftershock would be considered a major earthquake under ordinary circumstances, but is dwarfed by the mainshock.

The shift of mass and the massive release of energy very slightly altered the Earth's rotation. The exact amount is not yet known, but theoretical models suggest the earthquake shortened the length of a day by 2.68 microseconds, due to a decrease in the oblateness of the Earth. It also caused the Earth to minutely "wobble" on its axis by up to 2.5 cm (1 in) in the direction of 145° east longitude, or perhaps by up to 5 or 6 cm (2.0 or 2.4 in). However, because of tidal effects of the Moon, the length of a day increases at an average of 15 µs per year, so any rotational change due to the earthquake will be lost quickly. Similarly, the natural Chandler wobble of the Earth, which in some cases can be up to 15 m (50 ft), will eventually offset the minor wobble produced by the earthquake.

More spectacularly, there was 10 m (33 ft) movement laterally and 4–5 m (13–16 ft) vertically along the fault line. Early speculation was that some of the smaller islands south-west of Sumatra, which is on the Burma Plate (the southern regions are on the Sunda Plate), might have moved south-west by up to 36 m (120 ft), but more accurate data released more than a month after the earthquake found the movement to be about 20 cm (8 in). Since movement was vertical as well as lateral, some coastal areas may have been moved to below sea level. The Andaman and Nicobar Islands appear to have shifted south-west by around 1.25 m (4 ft 1 in) and to have sunk by 1 m (3 ft 3 in).

In February 2005, the Royal Navy vessel HMS Scott surveyed the seabed around the earthquake zone, which varies in depth between 1,000 and 5,000 m (550 and 2,700 fathoms; 3,300 and 16,000 ft). The survey, conducted using a high-resolution, multi-beam sonar system, revealed that the earthquake had made a huge impact on the topography of the seabed. 1,500-metre-high (5,000 ft) thrust ridges created by previous geologic activity along the fault had collapsed, generating landslides several kilometers wide. One such landslide consisted of a single block of rock some 100 m high and 2 km long (300 ft by 1.25 mi). The momentum of the water displaced by tectonic uplift had also dragged massive slabs of rock, each weighing millions of tons, as far as 10 km (6 mi) across the seabed. An oceanic trench several kilometres wide was exposed in the earthquake zone.

The TOPEX/Poseidon and Jason 1 satellites happened to pass over the tsunami as it was crossing the ocean. These satellites carry radars that measure precisely the height of the water surface; anomalies of the order of 50 cm (20 in) were measured. Measurements from these satellites may prove invaluable for the understanding of the earthquake and tsunami. Unlike data from tide gauges installed on shores, measurements obtained in the middle of the ocean can be used for computing the parameters of the source earthquake without having to compensate for the complex ways in which close proximity to the coast changes the size and shape of a wave.

Read more about this topic:  2004 Indian Ocean Earthquake And Tsunami, Earthquake Characteristics

Other articles related to "energy, energy released, released":

TNT Equivalent - Examples
... bomb dropped on Nagasaki on August 9, 1945, both exploded with an energy of about 12.5 kilotons of TNT (52 TJ) ... The energy contained in 1 megaton of TNT (4.2 PJ) is enough to power the average American household (in the year 2007) for 103,474 years ... To put that in perspective the blast energy could power the entire United States for 3.27 days ...
Richter Magnitude Scale - Details
... The Richter and MMS scales measure the energy released by an earthquake another scale, the Mercalli intensity scale, classifies earthquakes by their ... The energy and effects are not necessarily strongly correlated a shallow earthquake in a populated area with soil of certain types can be far more intense than a much more ... The energy release of an earthquake, which closely correlates to its destructive power, scales with the 3⁄2 power of the shaking amplitude ...
Black Saturday Bushfires - Overall Statistics
... It was estimated that the amount of energy released during the firestorm in the Kinglake-Marysville area was equivalent to the amount of energy that would be released by 1,500 Hiroshima-sized atomic bombs ... However direct comparisons between explosives and fires in units of energy released is meaningless, as explosives release their energy almost instantly in a fast pulse, in ...
Butanol Fuel - Properties of Common Fuels - Specific Energy
... Alcohol fuels have less energy per unit weight and unit volume than gasoline ... To make it possible to compare the net energy released per cycle a measure called the fuels specific energy is sometimes used ... It is defined as the energy released per air fuel ratio ...
TNT Equivalent
... equivalent is a method of quantifying the energy released in explosions ... metric ton) of TNT is a unit of energy equal to 4.184 gigajoules, which is approximately the amount of energy released in the detonation of one ton of TNT ... The megaton of TNT is a unit of energy equal to 4.184 petajoules ...

Famous quotes containing the words released and/or energy:

    Women are to be lifted up to a physical equality with man by placing upon their shoulders equal burdens of labor, equal responsibilities of state-craft; they are to be brought down from their altruistic heights by being released from all obligations of purity, loyalty, self-sacrifice, and made free of the world of passion and self-indulgence, after the model set them by men of low and materialistic ideals.
    Caroline Fairfield Corbin (b. c. 1835–?)

    The flattering, if arbitrary, label, First Lady of the Theatre, takes its toll. The demands are great, not only in energy but eventually in dramatic focus. It is difficult, if not impossible, for a star to occupy an inch of space without bursting seams, cramping everyone else’s style and unbalancing a play. No matter how self-effacing a famous player may be, he makes an entrance as a casual neighbor and the audience interest shifts to the house next door.
    Helen Hayes (1900–1993)